

A Gas Analysis System for High Intensity Laser Systems

Nuclear Astrophysics Workshop August 29, 2007

Mark A. Stoyer

N Division

Lawrence Livermore National Laboratory

Work performed for U.S. DOE under contract No. W-7405-Eng-48 with Univ. of California

Collaborators

 Charles Cerjan, Lee Bernstein, Richard Fortner, Steve Haan, Rollin Harding, Steve Hatchett, Rob Hoffman, Ken Moody, Dawn Shaughnessy, and Dieter Schneider

Outline of presentation

- We have been considering several nuclear reactions for both diagnostic and scientific purposes
 - —Technique is broad and has more than one diagnostic use (based on a variety of nuclear reactions)
 - —This is a work in progress update (radchem movies being generated by Rob Hoffman and Charlie Cerjan)
 - —Little will be said about capsule fabrication but it is recognized as a serious issue
- OMEGA results
- Looking to the future at NIF

Many different elements are desired for a variety of reasons

		List of Desired Eleme	ents for NIF capsules						
						Priority codes		odes	_
	Elen	ent Measured Isotope	Capsule location	Purpose	Priority		1	V. High	
	18	²¹ Ne	Inner ablator or shell, outer DT ice	Mix/Charged particle	1		2	High	
eady	in A	. 3 ⁷ Ar	DT gas or ice	High energy neutrons	1		3	Medium	
	В	¹⁰ Be	Ablator	Low energy neutrons	1		4	Low	
sule	В	^{79,81} Kr	Inner ablator or shell	Mix/Charged particle	1				
Juic	C	62,64Cu	Ablator	Spectral/capture	1				
	K		DT gas or ice	Spectral/capture	1				
	N	91,92m,93m,94m N b	Inner ablator or shell, outer DT ice	Spectral/capture	1				
	N	²¹ Ne	DT gas or ice	High energy neutrons	1				
	Т	⁴⁸ V	Inner part of ablator or inner shell	Mix/Charged particle	1				
	X	1	DT gas or ice	High energy neutrons	1	O			L
	Y	86,87,88 Y	Inner part of ablator, CH foam in Double Shell	High energy neutrons	1	Ur	HV 8	a te	w of
	⁷ L		DT fuel	Charged particle	2		_		
	A		Inner ablator or shell, outer DT ice	High energy neutrons	2	the	SP 6	alen	nents
	A	^{71,72,73,74,76,77} As	Inner ablator or shell, outer DT ice	Spectral/capture	2	1110		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101113
	A	193,194,196,198Au	Inner ablator or shell	Spectral/capture	2	0 K		4 : .	alv
	В		Inner ablator or shell, outer DT ice	Spectral/capture	2	al	e rc	Jutii	nely
	C	^{34m,36} Cl, ³⁷ Ar	Inner ablator or shell, outer DT ice	Mix/Charged particle	2				
	C		Inner ablator or shell, outer DT ice	Mix/Charged particle	2	C	ODE	ed in	nto
	E	148,149,150,152Eu, ^{151,153} Gd	Inner ablator or shell, outer DT ice	Spectral/Mix/Charged particle	2				
	1	^{124,125,126,128} I, ¹²⁷ Xe	Inner ablator or shell, outer DT ice	Mix/Charged particle	2		can	sule	00
	R	e ^{183,184} Re, ¹⁸⁵ Os	Inner ablator or shell, outer DT ice	Spectral/Mix/Charged particle	2		Jap	Sun	7 3
	Z	87,88,89 Z r	Inner ablator or shell, outer DT ice	High energy neutrons	2 /		D		O
	Н	175,178m,179m,180mHf	Inner ablator or shell, outer DT ice	Spectral/capture	3	e.a.	Br.	11.	Ge, Cu
	L	169,170,171,172,173,174Lu	Inner ablator or shell, outer DT ice	Spectral/capture	3	- U		1	,
	М		Inner ablator or shell, outer DT ice	Spectral/Mix/Charged particle	3				
	N		Inner ablator or shell, outer DT ice	Spectral/Mix/Charged particle	3		•	••/	
	N	^{56,57} Ni	Inner ablator or shell, outer DT ice	High energy neutrons	3				
	R	99,100,101,102 Rh	Inner ablator or shell, outer DT ice	High energy neutrons	3				
	T		Inner ablator or shell, outer DT ice	Spectral/capture	3				
	Т		Inner ablator or shell, outer DT ice	Spectral/capture	3				
	Tr		Inner ablator or shell, outer DT ice	Spectral/capture	3				1
	 V		Inner ablator or shell, outer DT ice	Spectral/capture	3				1
	1	187,188,189,190,192,193m,194,195 _{Γ,} 191,193m,195m		Spectral/Mix/Charged particle	4				1
	R		Inner ablator or shell, outer DT ice	Spectral/capture	4				
	S	,	Inner ablator or shell, outer DT ice	Spectral/Mix/Charged particle	4				-
	3	. Jiii, Lu	minor ablator or stilen, outer by lee	opootian mix/orialyeu particle	-7				-
								1	-

We have been investigating the following radiochemical signatures

- Implosion asymmetry Sc, Ir, Xe (n,2n) (n,γ)
- Mix $^{18}O(\alpha,n)^{21}Ne$, Br(d,2n) and Br(p,n)
- Ion temperature (fuel ρR) Kr, Ar (n,2n)
- dE/dx 0
- Influence of isomeric states

The various nuclear reactions used for radiochemistry utilize a variety of neutron and charged particle reactions

A significant difference exists between a working capsule and a failing capsule

Material Density Snapshot Negative P₆ Failure

Shell and Fuel

Cerjan

For asymmetry and mix, we position the dopant in the inner part of the ablator

- The inner part of the ablator is not blown off during the compression phase of the implosion
- This location is ideally suited to investigate ablator/fuel mix and is very near the high fluence region of the capsule
- We have investigated spatial loadings of dopants for one asymmetry mode (P6), but signal is just as robust with symmetric loadings (for those asymmetries investigated (P6 and P4)
- Amounts of dopant are low enough to not affect the implosion (for this location) and are on the order of 1×10¹⁴ – 1×10¹⁵ atoms

Rogues gallery of ARC radiographs of "hard" failures at bang time:(typically Y<~ 50 kJ)

For completeness sake, comparison of failures to successes

Steve Hatchett

P₄ failure has a drop of a factor of 37 in yield, but ¹³⁵Xe/¹³³Xe ratio increases by 31%

Comparison of failures to successes

Steve Hatchett

P₆ failure has a drop of a factor of 26 in yield, but ¹³⁵Xe/¹³³Xe ratio increases by 58%

Charged-particles can be used to quantify the amount of ablator/fuel mix

- Yield = 16 MJ
- 175 Group n/30 group CP
- Reaction is ${}^{18}O(\alpha,n)^{21}Ne$
- Need 10⁴ 10⁶ atoms ²¹Ne for measurement
- Case
 - A. 6.81×109 atoms ²¹Ne produced
 - B. 4.23×10¹⁰ atoms ²¹Ne produced
 - C. 3.61×10¹¹ atoms ²¹Ne produced
- Production of ²¹Ne sensitive to "mix" and measurable

Charged-particle reactions valuable for diagnosing "mix"

Charged particle reactions distinguish between two cases where cracks exist in the DT ice

Fuel ρR measurements are feasible with ³⁸Ar doped OMEGA DT capsules

Reaction Used ³⁸Ar(n,2n)³⁷Ar

 37 Ar has a 35 d half-life and is measured by gas-proportional counting (MDA $\approx 4 \times 10^5$ atoms)

Below MDA!

Capsule	Ablator	Yield (14 MeV neutrons)	Fuel ρR (mg/cm ²)	³⁷ Ar/ ³⁸ Ar*	$\begin{array}{c} \mathbf{K}^{\ddagger} \\ (\times 10^{23}) \end{array}$
ID	glass	6.0×10^{9}	-	1.2×10^{-10}	-
DD Cryo	СН	~ 10 ¹⁴	-	3.8×10^{-9}	-
DD Non-Cryo	glass	3.2×10^{13}	6.6	1.1×10^{-8}	5.4
DD Non-Cryo [†]	glass	3.9×10^{13}	6.8	1.4×10^{-8}	5.4
DD Non-Cryo	СН	6.7×10^{12}	13.8	5.7×10^{-9}	6.2
DD Non-Cryo	СН	9.1×10^{12}	14.6	8.2×10^{-9}	6.2

^{* ~1} at% ³⁸Ar loaded in fuel region of capsule

1D Lasnex simulations of direct-drive OMEGA DT capsules indicate ³⁷Ar activation is proportional to fuel ρR and measurable

[†]Significant production of ³⁸Cl, ³⁵S, and ³⁹Ar also

 $^{^{\}ddagger} K = (^{37}Ar)^{38}Ar)/(Y \cdot \rho R)$

Radiochemistry provides unique signals distinguishing twelve "benchmark" calculations

	maana	000	oroduotio b	برمامي	. 1EC atama	with this dat	o ot	or looding					
	means	one	product is t	elow	/ 1E6 atoms	with this det	ecu	or loading					
							ΔR	C images a	re a	vailable fro	nm SH n	rese	entation
					Ice crack	Ice crack	AR		AR			71000	ARC
			ID		ic00	ic01		sh00		sh01	sh0	2	sh03
			Yield (MJ)		1.27891	0.12648		0.87705	0	.0339743	1.214		0.0330379
Loaded	No. Loa	ded	Characteri	stic	sm. Crack	lg. Crack	F	P6 -0.0097	Р	6 -0.0145	P4 0.0	190	P4 0.0285
180	2.672E	+15	21Ne/18O		9.88E-10	1.90E-10		1.59E-07	•	1.72E-09	5.74E	-07	1.71E-09
79Br			79Kr/79Br		3.75E-10	3.49E-09		7.57E-07		9.99E-09	1.21E		1.14E-08
127l			127Xe/127		3.21E-10	2.64E-09		5.44E-07		7.27E-09	8.99E		8.41E-09
134Xe	2.580E	+13	135Xe/133		7.03E-04	2.23E-03		1.43E-03		2.26E-03	1.40E		1.84E-03
			133Xe/134		2.62E-07	3.80E-06		9.66E-04		2.53E-05	1.42E		3.02E-05
			135Xe/134		1.77E-10	8.48E-09		1.38E-06	Ę	5.71E-08	1.99E		5.57E-08
	127Xe/125>									2.39E	-02	3.52E-02	
	(135Xe/133					3.18		T		1.58		ı	1.31
		Cei	rjan Asyn	nme	etry>								
ID			ir01		ir02	ir03		ir04		ir0	5		ir06
Yield (M.	J)		1.096		0.0609	0.129		1.857		0.15	55		0.0623
Characte	eristic	P6	-0.0053	P6	-0.00795	P6 -0.00	66	P4 -0.01	15	P4 -0.01	14375	P4	-0.01725
21Ne/18	0	2.	12E-07	4	.50E-09	1.33E-0	8	6.52E-0	7	1.72E	-08	4	.69E-09
79Kr/79E	3r	1.	03E-06	2	.02E-08	5.44E-0	8	2.16E-0	6	7.30E	-08	2	2.26E-08
127Xe/1	27I	7.	40E-07	1	.45E-08	3.69E-0	8	1.60E-0	6	5.20E	-08	1	.63E-08
135Xe/13	33Xe	1.	32E-03	2	.06E-03	1.84E-0	3	1.32E-0	3	1.74E	-03	1	.88E-03
133Xe/1	34Xe	1.	18E-03	5	.38E-05	1.36E-0	4	1.93E-0	3	1.73E	-04	5	5.83E-05
135Xe/1	34Xe	1.	57E-06	1	.11E-07	2.50E-0	7	2.54E-0	6	3.00E	-07	1	.09E-07
127Xe/1	25Xe												
(135Xe/1	(33Xe)	fail/	good		1.56	1.	39				1.32		1.42

Comparing deuteron induced reactions with alpha induced reactions enables clear distinction between several of the "benchmark" calculations

Why gas sampling?

- Gas collection may be nearly 100% efficient for collecting samples
- Method is chemically inert, low sorption and has low backgrounds
- Method could be adapted for collection of "solid" samples with the use of carrier gas
- In a NIF sized target chamber (10 m diameter) using a thermalized source of gas and 15 cm diameter collection port, a simple model indicates 99% collection in about 93 seconds

- Many charged particle reactions produce noble gas products
- Method is relatively insensitive to EMP or x-rays, except for the past debris blown off the target chamber walls
- Choice of radioactive products makes detection easier and backgrounds from other shots less (if half-life is convenient, then past production nuclides have decayed away)
- Method can be non-intrusive to main experimental goals

There are many reasons gas sampling makes sense

We have demonstrated high gas collection efficiencies for the first time following a laser-driven implosion

- A capsule filled with a mixture of noble gases was imploded with full energy on OMEGA (3/04)
- Gas samples were taken with the OMEGA Gas Sampling System (OGSS)
- Collection efficiencies of 84%, 75% and 107% were measured using noble gas mass spectrometry here at LLNL for Ne, Kr and Xe, respectively (note: there is a few percent error in the measurement and the initial amounts of gases in the capsule were estimates)
- There are non-atmospheric sources of He and Ar present in the OMEGA target chamber (He is used a lot in capsules as a fuel and Ar is used to regenerate the cryopumps—not too surprising)
- Tritium background in the samples is less than 1 pCi due to the inclusion of a chemical getter pump on the system
- OGSS was used for the second time in Oct. 2004 to collect He samples and measure that collection efficiency

OGSS on OMEGA target chamber

A prototype system, designed and tested at LLNL, is installed on OMEGA

The use of a chemical getter pump solves several problems:

- High efficiency for hydrogen
- Does not pump Noble gases
- No mechanical vibration
- Pumping speed adequate to back turbo
- Exceptionally high capacity
- Relatively inexpensive

The sample bottles use standard mass spec system fittings

Once under vacuum, requires only occasional "assistance" from cryo #2 to maintain high vacuum in the manifold and sample bottles

Gas release curves from the cryo pump show the expected sample gases and a small air leak

Most of the Noble gases are released well before the cryo reaches room temp

Sangster, et al.

The data indicate ~100% cryo release and a consistent manifold collection efficiency

Sample #	He (std-cc)	Ne (std-cc)	Ar (std-cc)	Vacuum time				
blank	1.164 (too high)	0.291	0.093	77 hrs				
	f _{He} (of sample)	f _{Ne}	f _{Ar}					
1 (1.03 std-cc air)	0.747	0.519	0.464	25 hrs				
2 (1.04 std-cc air)	2.756	1.026	0.674	168 hrs				
3 (1.04 std-cc air)	0.972	0.590	0.500	52 hrs				
4 (1.01 std-cc air)	0.762	0.513	0.465	26 hrs				
5 (1.08 std-cc air)	1.288	0.666	0.532	72 hrs				
6 (1.08 std-cc air)	0.956	0.567	0.487	40 hrs				
Correction for an assumed constant leak rate from the blank sample								
1	0.381	0.427	0.435					
2	0.320	0.414	0.479					
3	0.218	0.400	0.440					
4	0.374	0.415	0.434					
5 (spiked w/ ²² Ne)	0.245	0.406	0.449					
6 (spiked w/ ²² Ne)	0.377	0.422	0.441					
Ave	0.314	0.422(.009)	0.441(.010)					
Using the ²² Ne spiked samples (5 & 6), a definitive collection fraction can be determined assuming								
100% release from the cryo pump:								
5		0.417 Cal	culated from the initia	al and final ^{22/20} Ne				
6		0.418 frac	tions					
				_				
Estimated collection fraction from measured manifold and sample bottle volumes: 0.43								

Hudson, et al.

Only some preliminary ideas have been thought about for gas collection at NIF

Dedicated Radchem Gas Collection System at NIF

Wolfgang Stoeffl

Proposed "Radchem" Gas Collection System using the existing NIF Chamber Vacuum System

Significant sample analysis capability exists at LLNL

- Low level counting facility in B151 (gamma, beta and alpha counting)
- Chemistry laboratories
- ICP-MS capability in B151
- Noble gas mass spectrometry (needs revival)
- IsoProbe
- Nano-Sims
- CAMS
- Activation counting at NIF

Conclusions

- Nuclear reactions probe important plasma physics issues such as mix—in fact there are several reactions that will be effective
- Radiochemical signatures for one asymmetry failure mode have been demonstrated with uniform detector loading in the innermost part of the ablator (so far spatial loading not required)
- Mix simulations show sensitivity to ice crack (charged particle reactions)
- High noble gas collection efficiencies (>80%) have been demonstrated for the first time on large laser systems
- NIF radiochemistry systems are starting to be designed

Radiochemistry will provide important complimentary diagnostic information as well as enable nuclear science experiments at NIF

Spare viewgraphs

We are developing multiple collection schemes for retrieval of solid samples

Conical

 Ge samples were collected with Al-covered flat and conical collectors positioned so that approximately equal solid angles were subtended

- Ge/Al separation chemistry will be performed
 - Dissolve AI foils with 2M HF
 - Load samples in 12M HCl on DOWEX-1x8 anion exchange columns
 - Remove AI with 12M HCI
 - Elute Ge with 2M HCI
 - ⁶⁸Ge used as tracer (t_{1/2} = 270.8d; detect 1077.3 keV gamma-ray from daughter 1.130h ⁶⁸Ga)
- The IsoProbe mass spectrometer will be used to measure isotopics and amount of Ge in the chemical samples

Flat

A comparison of Ge collection efficiencies will be made for two collectors once the Ge chemistry is tested

Sc and Ir radiochemistry results

Isotope	1 MJ	50 kJ	50 kJ/1 MJ	atoms/yield	Signal	50 kJ/MNA
45Sc	9.99E+13	1.00E+14	1.00E+00	1.86E+01	1759.49%	
46Sc	1.21E+08	1.51E+07	1.25E-01	2.32E+00	131.82%	1.89E+00
43Ca	1.26E+07	3.90E+04	3.10E-03	5.75E-02	94.25%	
41K	1.03E+06	3.40E+03	3.30E-03	6.13E-02	93.87%	
43Sc	1.39E+06	5.21E+03	3.75E-03	6.96E-02	93.04%	8.68E-03
45Ti	2.40E+07	5.06E+05	2.11E-02	3.92E-01	60.84%	3.37E-03
46Ti	8.43E+07	1.95E+06	2.31E-02	4.30E-01	57.03%	
44Ca	3.53E+10	1.74E+09	4.93E-02	9.16E-01	8.43%	
42K	4.66E+09	2.35E+08	5.04E-02	9.37E-01	6.32%	1.18E+03
45Ca	5.56E+09	2.81E+08	5.05E-02	9.39E-01	6.12%	2.34E+02
44mSc	8.02E+09	4.19E+08	5.22E-02	9.71E-01	2.95%	8.38E+02
44Sc	1.90E+10	1.00E+09	5.26E-02	9.78E-01	2.23%	5.00E+03

Isotope	61 kJ	1.1 MJ	61kJ/1.1MJ	atoms/yield	Signal	61 kJ/MNA
Ir	2.58E+13	2.58E+13	1.00E+00	1.80E+01	1703.28%	
194Ir	2.12E+07	1.49E+08	1.42E-01	2.57E+00	156.57%	2.12E+01
194mlr	4.41E+06	3.44E+07	1.28E-01	2.31E+00	131.18%	8.82E-01
189Ir	1.50E+05	2.04E+07	7.35E-03	1.33E-01	86.74%	2.50E-02
190Ir	8.26E+08	1.81E+10	4.56E-02	8.23E-01	17.71%	4.13E+02
192Ir	1.33E+09	2.88E+10	4.62E-02	8.33E-01	16.72%	4.43E+02
193mlr	2.48E+08	4.58E+09	5.41E-02	9.76E-01	2.36%	4.13E+01

Both (n,γ) reactions and (n,2n) reactions show significant signals

Multiple-order (n,2n) reactions can be used to measure mix in NIF capsules

Detector (atoms) or Ratio	No Mix	10% Mix of ablator/o	detector
¹⁷⁵ Lu _L	1.00×10^{16}	1.00×10^{16}	
¹⁷⁴ Lu	1.07×10^{13}	2.00×10^{13}	
¹⁷³ Lu	1.96×10^{10}	4.50×10^{11}	
¹⁷² Lu	3.24×10^7	5.10×10^9	
¹⁷¹ Lu	4.52×10^4	4.79×10^{7}	
¹⁷⁰ Lu	4.41×10^{1}	3.35×10^{5}	
174 Lu/ 175 Lu _L	1.07×10^{-3}	3.60×10^{-3}	
¹⁷³ Lu/ ¹⁷⁴ Lu	1.83×10^{-3}	1.25×10^{-2}	
¹⁷² Lu/ ¹⁷³ Lu	1.65×10^{-3}	1.13×10^{-2}	
¹⁷¹ Lu/ ¹⁷² Lu	1.40×10^{-3}	9.41×10^{-3}	1.4E-02
¹⁷⁰ Lu/ ¹⁷¹ Lu	9.76×10^{-4}	6.98×10^{-3}	1.2E-02
$^{169}\mathrm{Tm_L}$	1.00×10^{16}	1.00×10^{16}	1.0E-02
¹⁶⁸ Tm	1.04×10^{13}	3.50×10^{13}	i 8.0E-03
¹⁶⁷ Tm	1.87×10^{10}	4.38×10^{11}	6.0E-03
¹⁶⁶ Tm	2.90×10^{7}	4.70×10^9	∢ 4.0E-03
¹⁶⁵ Tm	4.11×10^4	4.53×10^{7}	
$^{168}{ m Tm}/^{169}{ m Tm_L}$	1.04×10^{-3}	3.50×10^{-3}	2.0E-03
¹⁶⁷ Tm/ ¹⁶⁸ Tm	1.80×10^{-3}	1.25×10^{-2}	0.0E+00
¹⁶⁶ Tm/ ¹⁶⁷ Tm	1.55×10^{-3}	1.07×10^{-2}	
¹⁶⁵ Tm/ ¹⁶⁶ Tm	1.42×10^{-3}	9.64×10^{-3}	

Because of large 14 MeV fluence, three to four sequential (n,2n) reactions are observable in NIF experiments without mix;
 this increases to four to five sequential (n,2n) reactions if 10% mix

The observed isotope ratios would determine mix percentage and severely constrain models of the implosion

Cu activation can be used to measure the thickness of the capsule ablator at peak neutron production time

- 65,63Cu present in the ablator will react with 14 MeV neutrons produced by DT fusion to produce nuclides that emit gamma-rays (64,62Cu) via (n,2n) reactions—the cross-section for these reactions are large (0.5-1 b)
- A sample of Cu will be collected following an implosion that will include un-reacted Cu and these radioactive nuclides
- The radioactivity (⁶⁴Cu t_{1/2} = 12.7 h and ⁶²Cu t_{1/2} = 9.7 m) is quantified via gamma-ray spectroscopy (1345.8-keV gamma-ray and 857.7-keV gamma-ray, respectively)
- The Cu in the samples is chemically purified and the un-reacted Cu is quantified via isotope dilution mass spectrometry to determine the fraction of Cu collected

The ratio ⁶⁴Cu/⁶⁵Cu (or ⁶²Cu/⁶³Cu) is proportional to ρR × Yield

Several different targets were used for radiography -- ride-a-long collections were performed

Carol Velsko, Brian Spears, Damien Hicks, Mark Stoyer Convergent Ablation Rate Target Capsules

Nominal capsule designs have 4 ± 2 μgrams Cu, ~44 μgm Be.

Actual-A and C had higher atom% Cu in BeCu layers and B was near nominal.

No gas in capsules.

The primary purpose of the experiments was to radiographically obtain ablation rate

Radiochemical samples were collected from two locations in the target chamber

We used semi-conductor quality Si in the flat collector to collect samples

First time we had collected samples on indirect drive shots

We were looking for 10-40 ng of Cu!

- Total Dissolution and ICP-MS analyses
 - Vanadium backlighter ~30 μgm, expect < 1 nanogram Copper added to debris*
 - Gold hohlraum 7mg, will have 35 μgm Au and 6.5 nanogm Cu in debris*
 - BeCu capsules initial results from meas'd concentrations predict ~430 nanogram Be and 43, 20, or 15 nanogm Cu in debris*
 - A capsule 44 μgm Be, 2.71 at% Cu=8.6 μgm
 - C capsule 41 μgm Be, 1.25 at% Cu=3.9 μgm
 - B capsule 45 μgm Be, 1.33 at% Cu=3.8 μgm

11

Solid samples collected during OMEGA implosions were dissolved

Dissolution chemistry is exciting!

Setup for silicon dissolution.

acid (HF).

After an addition of HNO₃, exothermic reaction with release of NOx gases.

Near end of dissolution thin, lacy Si pieces, NOx, clear solution and white condensate.

We observed Au and Be above background, but there was a Cu background which obscured our signal

Some observations about Cu collection

Appeared to be Cu surface contamination on Si samples

- Asymmetry observed in Au and Be collection more Au collected on collector located on hohlraum waist and more Be collected on collector located at LEH
- Easily see the Au, more difficult for Be and Cu was below background—as you would expect from initial amounts of these elements in the experiment
- No overwhelming chamber background
- Collection trends did not increase from shot to shot during the day indicating small cross-shot contamination

Reactions on excited states could provide insight into reactions on neutron-rich nuclei far from stability*

Is shell structure "quenched" in highly excited states?

Production of excited states in-situ at NIF does alter the expected radiochemistry product ratios

Excited states play a role in the Y crosssection set

